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Combinatorial Optimization of Mat-Vec Multiplication

+ Two main subtopics

- Serial matrix-vector multiplication
- Reducing redundant operations
- Dense relatively small matrices

* Parallel matrix-vector multiplication
- Minimization of communication volume
- Large, sparse matrices




Optimization of Serial Mat-Vec Multiplication

Motivation:

B—»
/ \

Based on reference
element, generate code to Can use optimized code

optimize construction of for every element in
local stiffness matrices domain

» Reducing redundant operations in building finite
element (FE) stiffness matrices
- Reuse optimized code when problem is rerun
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Related Work

- Finite element "Compilers” (FEnICS project)
- www.fenics.org

- FIAT (automates generations of FEs)

- FFC (variational forms -> code for evaluation)

» Following work by Kirby, et al., Texas Tech,
University of Chicago on FErari

- Optimization of FFC generated code to evaluate
finite element matrices

- Equivalent to optimizing matrix-vector product code




Matrix-Vector Multiplication

For 2D Laplace equation, we obtain following matrix-

vector product to determine entries in local

stiffness matrix
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Optimization Problem

Objective: Generate set of operations for
computing matrix-vector product with minimal
number of multiply-add pairs (MAPs)
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Possible Optimizations - Collinear Rows

| [2220][n
20 13330/
ys | |22 2 0] =3
Y1 555 8 ||

I'o = 1.51‘1




Possible Optimizations - Colinear Rows

Y1 2 220 ||m
v2| | 333 0]
ys | |22 2 0| s
Y 555 8 ||

ro = 1.0r1 = yo = 1.9y; 1 MAP




Possible Optimizations - Identical Rows

| [2220][n
201 133302
ys | |2 2 2 0] =3
Y1 555 8 ||

rs =ry = Ys = Y1 0 MAPs

/

Special case when
rows identical
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Possible Optimizations - Partial Colinear Rows

Y1 2 220 ||m
2| | 333 0]
ys | |22 2 0| s
Y 555 8 ||

ry — 2.9r71 + 8ey
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Possible Optimizations - Partial Collinear Rows

Y1 2 220 ||m
2| | 333 0]
ys | |22 2 0| s
Y 555 8 ||

ry = 2.5r1 + 38€4 = Y4 = 2.5Yy1 + 814
2 MAPs
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Graph Model - Resulting Vector Entry Vertices

448
-2-2 -4

» Enftries in resulting vector represented by
vertices in graph model

13



Graph Model - Inner-Product Vertex and Edges

Yo — —2332 — 2333 — 45!34

N
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Y1 = 8xr1 + 4xo + 43 + 814

I‘1T

8 4 48
r'|0 -2 -2 -4

» Additional inner-product (IP) vertex

+ Edges connect IP vertex to every other
vertex, representing inner-product operation
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Graph Model - Row Relationship Edges

8
— >
rot 0-2-2-4 @ \
3

Y1 = —2y2 + 871
y2 = —0.9y1 + 4

» Operations resulting from relationships
between rows represented by edges between
corresponding vertices
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Graph Model - Edge Weights

y2:—2x2—2x3—4x4\A
3
I‘1T8 4 4 8 |
I‘2TO 2 2 -4

— —2y2 + 8331
= —0.5y1 + 4x

+ Edge weights are MAP costs for operations
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Graph Model Solution

Matrix Graph MST(5)

» Solution is minimum spanning tree (MST)
- Minimum subgraph
- Connected and spans vertices
- Acyclic
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Graph Model Solution

Y

8448 . ./ﬁ) p |V2 = —2z2 — 223 — 414
I 0-2-2-4 1 = —2Y2 + 811

Matrix MST Traversal Instructions

* Prim's algorithm to find MST (polynomial time)
* MST traversal yields operations to optimally

compute (for these relationships) matrix-vector
product
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Graph Model Results - 2D Laplace Equation

Unoptimized | Graph
Order MAPs MAPs
1 10 7
2 34 14
3 108 43 | €= 50% decrease
4 292 152
5) 589 366
6 1070 686

+ Graph model shows significant improvement over
unoptimized algorithm
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Graph Model Results - 2D Laplace Equation

Unoptimized | FErari | Graph

Order MAPs MAPs | MAPs
1 10 7 7

2 34 15 14

3 108 45 43

4 292 176 152

5 589 443 366

6 1070 867 686

<€ 21% decrease

* Improved graph model shows significant

improvement over FErari
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Graph Model Results - 3D Laplace Equation

Unoptimized | Graph
Order MAPs MAPs
1 21 17
2 177 79
3 789 342
4 25086 | 1049 | €= 599 decrease
5 7125 3592
6 16749 8835

* Again graph model requires significantly fewer
MAPs than unoptimized algorithm

21



Graph Model Results - 3D Laplace Equation

Unoptimized | FErari | Graph

Order MAPs MAPs | MAPs
1 21 — 17

2 177 101 79

3 789 370 342

4 2586 1118 | 1049

5) 7125 — 3592

) 16749 — 8835

<4 22% decrease

* Again graph model requires significantly fewer
MAPs than FErari

22



Limitation of Graph Model

vl [1231]["
vl _|4444|| "
Bl 0022 %
u] l2200]L%.

ro = 2r3 + 2rg4 = Yo = 2y3 + 2y4

- Edges connect 2 vertices
» Can represent only binary row relationships

» Cannot exploit linear dependency of more than
Two rows

» Thus, hypergraphs needed
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Hypergraph Model

2|1 1 0 0| —» (1)
rs'|0 0 1 1 ‘\

Y1 = 3Y2 + 3Y3

»+ Same edges (2-vertex hyperedges) as graph model
* Additional higher cardinality hyperedges for more
complicated relationships

- Limiting to 3-vertex linear dependency hyperedges
for this talk
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Hypergraph Model

+ Extended Prim's algorithm to include hyperedges
» Polynomial time algorithm

» Solution not necessarily a tree

- {IP,1,3,5}

- {IP,2,4,5}

* No guarantee of optimum solution
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Hypergraph Model Results - 2D Laplace Equation

Unoptimized | Graph | HGraph
Order MAPs MAPs | MAPs

1 10 7 6
2 34 14 14
3 108 43 43
4 292 152 150
5 589 366 363
6 1070 686 686

* Hypergraph solution slightly better for some
orders but not significantly better
* Graph algorithm solution close to optimal?

- 3 Columns
- Binary relationships may be good enough
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Hypergraph Model Results - 3D Laplace Equation

Unoptimized | Graph | HGraph
Order MAPs MAPs | MAPs
1 21 17 17
2 177 79 68
3 789 342 297
4 2586 | 1049 852 | = 19% additional
5! 7125 3592 3261 decrease
6 16749 8835 8340

* Hypergraph solution significantly better than
graph solution for many orders
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Future Work: New Hypergraph Method(s)

+ Greedy modified Prim's algorithm yields
suboptimal solutions for hypergraphs

+ Want improved method that yields better

(or optimal) solutions
-Improved solution
- Optimality of greedy solution

» First approach: integer programming method
-Express valid hypergraph solution more formally

- Exponential number of variables/constraints
discouraging

* New approach: formulate as vertex ordering
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Future Work: Vertex Ordering Method

- Order vertices

-Roughly represents order of calculation for entries
* For given ordering, can determine optimal
solution subhypergraphl!

- Greedy algorithm of selecting cheapest available
hyperedge

- Fast
* Ordering is challenging part

- Traversal of greedy solution good starting point
-Local refinement on starting point

» Develop global ordering method
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Future Work: Hyperedge Detection/Construction

* Hyperedge detection/construction is bottleneck

» Currently brute force operation (nested loops)
-e.g. O(n3) calls to coplanar detection kernel for n rows

+ Detection kernel: originally SVD, now hybrid

Matrix n || Orig Time (s) | Hybrid Time (s)
2DP5 231 9.1 1.4
2DP6 406 50.8 4.8
3DP3 210 4.8 0.4
3DP4 630 115.4 7.3
3DP5 | 1596 1921.9 117.5
3DP6 | 3570 26510.9 1248.2

+ Improvement over brute force method
- Better complexity than O(n3)
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Future Work: Hyperedge Pruning

* Hyperedge explosion

- Over 10 million hyperedges for FE matrices

- Hypergraphs too large to fit on one processor

* Most hyperedges won't be in optimal solution
- Want to prune as many as possible

* For example, currently prune

- Hyperedge if weight greater or equal than number
of nonzeros for all involved vertices

- Coplanar (3 V) hyperedge if two of rows are
collinear

* Need additional pruning heuristics
- One possibility: use graph solution
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Future Work: Miscellaneous

* Runtime of resulting operations

- Preliminary studies show slight improvement
- Not as good as MAP improvement

- More complete study necessary

* Better instruction ordering
- Currently do naive traversal of solution subgraph

- Can do something more clever/cache-friendly
- Solution is dependency graph
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Sparse Matrix Partitioning

* Work with Dr. Erik Boman (SNL)

- CSCAPES Institute

* Researched and developed two hew
two-dimensional methods

- If successful, will be implemented as part of
new matrix partitioning suite in Zoltan
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Parallel Sparse Matrix-Vector Multiplication

Vi 1 6 000000 (|1
2 5 1 9 05 0 0 0 |2
Vs 081 7 0000 (|4
vl [0 0 2 1 000 3
10 00O 00
4 0 00 0
V7 0006 09 1412
Ve 0000O0O0 2 1 ||
|Ye_ i v — Ax 1L

* Partition matrix nonzeros
- Partition vectors
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Objective

» Ideally we minimize total run-time

+ Settle for easier objective

- Work balanced
- Minimize total communication volume

» Can partition matrices in different ways
- 1-D

- 2-D

» Can model problem in different ways

- Graph

- Bipartite graph

- Hypergraph
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1-D Partitioning

X X
XX XX
XXX X XXX X
XXX XXX
XX X y XX X
X X X X
X XXX X XXX
X XXX X XXX
XX XX
1-D Column 1-D Row
» Each process » Each process
assigned nonzeros assigned nonzeros

for set of columns for set of rows
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When 1-D Partitioning is Inadequate

X X
X X
X X
X X|  “Arrowhead” matrix
y XX >>§ n=12
XX § nnz=34 (18,16)
X X volume =9
X X
XX
). 9.9.9.9.9.9.9.9.9.9.9.¢

* For any 1-D bisection of nxn arrowhead matrix:
- hnz = 3n-2

- Volume % (3/4)n

* O(k) volume partitioning possible
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2-D Partitioning

* More flexibility in partitioning
* No particular part for given row or column
* More general sets of nonzeros assigned parts

* Fine-grain hypergraph model
- Ultimate flexibility
- Assign each nz separately

» Corner symmetric partitioning method
* 6raph model for symmetric 2-D partitioning
* Nested dissection symmetric partitioning method
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Fine-Grain Hypergraph Model

X X - Catalyurek and
X X| Aykanat (2001)
X X| *Nonzeros represented
X N4 ﬁy verTicef‘ in
ypergrap
X X
X X
XX
XAXXXXXXX
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Fine-Grain Hypergraph Model

h1

X

Y

h2

h3

X

h4

X

hS

X

h6

X

h7

X

h8

XXXXXXX

X
X
X
X
X
X
X

*Rows represented by
hyperedges
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Fine-Grain Hypergraph Model

X
X
X
X
X

XAXAKXXX

X

X
X
X
X
X
X
XX

X

* Columns
represented by
hyperedges
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Fine-Grain Hypergraph Model

h11

h16

h8

ho |[h10 h12|[h13||n14|[n15
X X
:h2 X X
O
T XX
X X
;h6 X ><j
h7 ><j

X

XX

* 2n hyperedges
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Fine-Grain Hypergraph Model

'5/h16

hi

h2

X

h3

X

h4

X

hS

X

XX XXX

h6

XX

h7

XX

h8

XX XXX XXX

k=2, volume = cut = 2

* Partition vertices

into k equal sets

* For k=2

- Volume = number of
hyperedges cut

* Minimum volume

partitioning when
optimally solved

* Larger NP-hard

problem than 1-D
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New 2-D Method: “"Corner” Symmetric Partitioning

X
X
X
X

XXXXX

X X
XX
XAXAXXXXXX

* Optimal partitioning of arrowhead
matrix suggests new partitioning method
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"Corner” Symmetric Partitioning

XX

* 1-D parts reflected across diagonal
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"Corner” Symmetric Partitioning

X

X

X

X
X
XAXXXXXXX

» Take lower triangular portion of
matrix
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"Corner” Symmetric Partitioning

X

X

X

X
X
AXXXXXXX

* 1-D (column) hypergraph partitioning
of lower triangular matrix
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"Corner” Symmetric Partitioning

* Reflect partitioning symmetrically
across diagonal

48



"Corner” Symmetric Partitioning

X
X
X
X

X

XAXAXXXXX

X

X
X
X
X
X
XX
X

» Optimal partitioning

Volume =2
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Comparison of Methods -- Arrowhead Matrix

k || 1D column | Corner | Fine grain
2 29101 2% 2%
4 40001 6* 6*
16 40012 30* 30%*
64 40048 126* 126*
Order n 2\(k1)/
- n = 40,000

- hnz = 119,998

» Communication volume for 3 methods *optimal
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Preliminary Results

Name N nnz | nz/N nz/(N)?

cagel0 11,397 | 150,645 | 13.2 | 1.16 x 103
finan512 74,752 | 596,992 8.0 | 1.07x 1074
besstk30 28,924 | 2,043,492 | 70.7 | 2.44 x 1073
asic680ks || 682,712 | 2,329,176 3.4 | 5.00 x 10~

- Symmeftric matrices

* First 3 from Professor Rob Bisseling's
(Utrecht University) Mondriaan paper

* Last from Sandia Xyce circuit simulation

* Hypergraph partitioning for all methods
- Zoltan with PaToH
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Preliminary Results: Communication Volume

Name k || 1d hyp.Col | fine-grain hyp. corner
cagel( 2 2308.2 1879.6 | 1866.6
4 5379.0 4063.7 4089.3

16 12874.5 8865.5 8920.9

64 23463.3 16334.7 | 17164.0

finan512 2 147.8 126.1 100.0
4 295.7 261.2 215.0

16 1216.7 1027.4 845.0

64 9986.0 8624.6 | 8135.2

besstk30 2 605.6 662.6 618.5
4 1794.4 1935.7 | 1531.0

16 8624.7 9774.8 | 7232.2

64 23308.0 25677.2 | 20351.4

asic680ks | 2 1543.5 686.6 936.9
4 3560.4 1813.3 2214.2

16 9998.5 4634.0 5562.8

64 21785.8 9554.9 | 11147.3

v¢
v¢
v¢

¢
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Future Work: Reordering

» Ordering not advantageous in 1D methods
- Same graphs/hypergraph models

» Corner method partitioning quality depends
greatly on ordering

-Ordering impacts of f-diagonal nz partitioning

+ Symmetric reordering to further reduce
communication

- Focus on bisection
-Recursive bisection for k>2
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Reordering (Bisection)

» Graph model 6(V E)
- Vector entries represented by vertices
- Off-diagonal nonzeros represented by edges
- Each vertex v;assigned part s; and
position 7r;
- V; “costs" 2 words of communication iff
El”l)j : (”U@',Uj) c b, s; # Sj, T > Tj
+ U; “free" otherwise
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Reordering (Bisection)
———

X
X

vol=2 vol=4

XXX

X
X
- V; “costs" 2 words if

El?)j : (”UZ',’U]‘) c kE,s; # Sj,Tj > Ty
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Reordering (Bisection)

» Ideally find optimal partitioning/ordering
- Very difficult combinatorial problem

* Instead we propose

- Fix ordering, partition
- Corner method

- Fix vertex partitioning, find optimal ordering
» Can iterate two steps

* Need to find optimal vertex ordering given
fixed vertex partitioning
-Divide graph into 3 categories of vertices
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Reordering (Bisection): Vertex Categories

Interior
vertices

» Interior vertices: not adjacent to any
vertex owned by different part
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Reordering (Bisection): Vertex Categories

boundary vertices

* Boundary vertices: adjacent to at least one
vertex owned by different part
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Reordering (Bisection): Vertex Categories

® 6

&0<:
‘,
® o

bipartite graph

- Bipartite graph obtained by
- Removing interior vertices
- Removing non-cut edges
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Reordering (Bisection): Vertex Categories

® 6

5 0

* Minimum vertex cover of bipartite graph
- Cover boundary vertices
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Reordering (Bisection): Vertex Categories

@ 16

* Non-cover boundary vertices
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Reordering (Bisection): Vertex Categories

- 3 Categories
- Interior vertices
- Non-cover boundary vertices
- Cover boundary vertices

62



Reordering (Bisection): Ordering Interior V

* V; "costs” if
El?)j . (”UZ',”UJ') c E,s; # Sj, T > Tj

- Interior vertices can be given any position
with no affect on volume
- Since adjacent vertices have same part
- Position these first
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Reordering (Bisection): Ordering Other V

» Ui "costs” if
El‘l)j : (U@,Uj) c b, s; # Sj, T > Tj

* Find ordering of remaining V such that
- Minimum set of vertices result in communication

- Equivalently, minimum set of vertices such that
for each edge in bipartite graph, vertex with
larger numbered position is contained in this set

- Minimum vertex cover gives us this set
- With cover vertices ordered last

* Order cover boundary vertices last
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Reordering (Bisection): Resulting Matrix

) WX AN
K‘\- Yo o' "‘-"- e E
. L0 .

o O o
‘}>'\. Y, :)'\.

.u

.l’ A'(:T“-
wavie, " S0l0e
-
b
RRRRRKY] 202000
o oW o
XXX olelel
l 1 | J

Interior Vertices  Non-cover vertices Cover Vertices

* Only cover boundary vertices "cost”
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Graph Model for Symmetric 2-D Partitioning

* Given symmetric matrix A
- Symmeftric partition

- a(i,j) and a(j,i) assigned same partition

- Input and output vectors have same distribution
» Corresponding graph G(V ,E)

- Vertices correspond to vector elements

- Edges correspond to of f-diagonal nonzeros
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Graph Model for Symmetric 2-D Partitioning

IIIIIIIII

: XX
JIXXXXXXXX

» Corresponding graph G(V,E)
- Vertices correspond to vector elements
- Edges correspond to of f-diagonal nonzeros
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Graph Model for Symmetric 2-D Partitioning
X

X
><x
y X

XAXXXXX

X
XX
XAXAXXXXXX

- Symmetric 2-D partitioning
- Partition both Vand E
- Gives partitioning of both matrix and vectors
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Communication in Graph Model
X

X
X
X
X

X
XX
XAXAXXXXXX

XAXXXXX

- Communication is assigned to vertices

- Vertex incurs communication iff incident

edge is in different part
+ Want small vertex separator -- S={Vg}
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Nested Dissection Partitioning Method - Bisection

+ Suppose A is symmetric
+ Let 6(V,E) be graph of A
» Find small, balanced separator S
- Yields vertex partitioning V = (VO,V1,S)
» Partition the edges

- EO = {edges that touch a vertex in VO}
- E1 = {edges that touch a vertex in V1}
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Nested Dissection Partitioning Method - Bisection

- Vertices in S and corresponding edges
- Can be assigned to either partition
- Can use flexibility fo maintain balance

- Communication Volume = 2*| S|

- Regardless of S partitioning
- |S]| in each phase
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- Recursive bisection to

- Use nested dissectionl!

Nested Dissection Partitioning Method

partition into >2
partitions

L
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Preliminary Numerical Experiments

»+ Compared 3 methods

- 1-D hypergraph partitioning

- Fine-grain hypergraph partitioning

- Nested dissection partitioning

* Hypergraph partitioning for all methods
- Zoltan with PaToH

- Symmetric and honsymmetric matrices
- Mostly from Prof. Rob Bisseling (Utrecht Univ.)

- k=4,16, 64 partitions
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Communication Volume - Symmetric Matrices
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Runtimes

cagelO | finan512
200

701

M 1d Column M 1d Column
6041 M Fine-grain |- M Fine-grain
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g0 ||
@ Al
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0 4
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Nonsymmetric Matrices

+ Given nonsymmetric matrix A
» Construct bipartite graph G'(R,C,E)
- R vertices correspond to rows, C vertices to columns

- E correspond to nonzeros
- Can be represented by symmetric adjacency matrix

% m C1 X
—_ —_ XX A,:[ 0 A]
X X XX AT 0
e (Of—(De: X
A4 Bipartite graph A’

- Apply nested dissection approach to G
- Use same algorithm as for symmetric case
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Communication Volume - Nonsymmetric Matrices

cre_ b Rectangular tbdlinux
14000 (T 14+ 3500001 Tg 7 g+
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Messages Sent (or Received) per Process

cagelO | finan512

407[ [m1d Column 1077 /m1d Column
35| |MFine-grain [~ M Fine-grain
~ |Enested diss. 8{| |Enested diss.| o

o

messages
>

messages

...................................................................................................................................................................................................................................................................................................................................

bcsstk32 bcsstk30

1277 'm1d Column 1477 /@14 Column
|MFine-grain | [OON . 12 ||| MFine-grain |-
10| |mnested diss. [ nested diss.

messages
messages

k=4 k=16 k=64 k=4 k=16 k=64
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Summary of Nested Dissection Method Results

* New nested dissection 2-D algorithm
- Implemented using existing algorithms and software
- Quality better than 1-D, and similar to fine-grain
hypergraph method for many matrices
- Faster to compute than fine-grain hypergraph
- Fewer messages than fine-grain hypergraph
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Improved graph model

Hypergraph model

Improved hypergraph
algorithm -

0] 20 40 60 80 100
Approximate % complete

* Improved hypergraph algorithm

- Develop vertex ordering algorithm
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Hyperedge
Pruning

Hyperedge
Detection

Operation
Ordering

0 20 40 60 80 100
Approximate % complete

- Hyperedge pruning
- Develop one or two more heuristics
- One based on MST graph solution
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Hyperedge
Pruning

Hyperedge
Detection

Operation
Ordering

0 20 40 60 80 100
Approximate % complete

 Hyperedge detection

- Need to improve O(n3) looping (for coplanar)
» Operation ordering
- More cache friendly ordering
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Progress: Sparse Matrix Partitioning (1)

Corner
Method

Corner
Reordering

Nested
Dissection
Approach

0 20 40 60 80 100
Approximate % complete

» Corner reordering
- Implement proposed method

* Nested dissection approach
- Improve partitioning of separator vertices/edges
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Progress: Sparse Matrix Partitioning (2)

Nonsymmetric
Matrices

Other
Communication
Metrics

Numerical
Experiments

0 20 40 60 80 100
Approximate % complete

Nonsymmetric matrices
- Corner method
- Improve nested dissection approach to nonsymmetric
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Progress: Sparse Matrix Partitioning (2)

Nonsymmetric
Matrices

Other
Communication
Metrics

Numerical
Experiments

0 20 40 60 80 100
Approximate % complete

- Other communication metrics
- Messages

* Numerical experiments
- Larger matrices
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